# Labor Supply Responses and Adjustment Frictions: A Tax-Free Year in Iceland

Jósef Sigurdsson

IIES, Stockholm University

February 2019

# How does labor supply respond to temporary wage changes?

Frisch elasticity: Elasticity of intertemporal substitution in labor supply



### Wide Range of Views on the Size of Frisch Elasticity

- Macro models of employment require large elasticity
- Micro estimates not conclusive, often small or insignificant

# Notoriously Difficult to Measure Frisch Elasticity

Requires exogenous and transitory wage changes

Labor supply responses attenuated by

- Adjustment frictions, unless wage changes are large (Chetty, 2012)
- Inattentiveness, unless wage changes are salient (Chetty et al., 2009)

#### A Tax-Free Year on Iceland



#### A Tax-Free Year on Iceland



### My Contribution

- 1. Create employer-employee data from digitized population records
- 2. Two identification strategies: One is "industry standard" and one is new
- 3. Estimate Frisch elasticities
- 4. Study the **mechanisms** behind the responses

#### **Adjustment Margins**

Research Designs Tax-Bracket DD

| Intensive | Extensive |
|-----------|-----------|
|           |           |
|           |           |
|           |           |
|           |           |
|           |           |
|           |           |
|           |           |

#### **Adjustment Margins**

Tax-Bracket DD

| Intensive                                         | Extensive                                         |
|---------------------------------------------------|---------------------------------------------------|
| Labor supply elasticity<br>  Adjustment frictions | Labor supply elasticity<br>  Adjustment frictions |
|                                                   |                                                   |

#### **Adjustment Margins**

Tax-Bracket DD

| Intensive                                         | Extensive                                         |
|---------------------------------------------------|---------------------------------------------------|
| Labor supply elasticity<br>  Adjustment frictions | Labor supply elasticity<br>  Adjustment frictions |
| No estimate for bottom income group               | Cannot estimate entry responses                   |
|                                                   |                                                   |
|                                                   |                                                   |

#### **Adjustment Margins**

Tax-Bracket DD

| Intensive                                                                              | Extensive                                                                                      |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Labor supply elasticity<br>  Adjustment frictions                                      | Labor supply elasticity<br>  Adjustment frictions                                              |
| Labor supply elasticity   Adjustment frictions ± Equilibrium effects  Whole population | Labor supply elasticity   Adjustment frictions ± Equilibrium effects  Entry and exit responses |

#### **Adjustment Margins**

Intensive

**Extensive** 

Tax-B

Tax-Bracket DD

Triple-Diff

Combined design

| meensive                                                             | Extensive                                                            |
|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Labor supply elasticity<br>  Adjustment frictions                    | Labor supply elasticity<br>  Adjustment frictions                    |
| Labor supply elasticity   Adjustment frictions ± Equilibrium effects | Labor supply elasticity   Adjustment frictions ± Equilibrium effects |

#### Preview of Results

- Intensive margin elasticity: 0.37
- Extensive margin semi-elasticity: 0.07

### Anatomy of Labor Supply Responses

#### 1. Labor-market attachment

• Individuals with low labor-market attachment have very elastic labor supply

#### 2. Job flexibility

- Workers in flexible jobs have much higher elasticities than constrained workers
- Constrained workers take up secondary-jobs

#### 3. Family ties and coordination

- Married women more responsive than their husbands
- Husbands have a negative cross-elasticity to their wife's tax-cut

### Roadmap

- Results in Context of Previous Work
- Empirical Setting and Data
- Tax-Bracket DD
- 4 Life-Cycle DD
- 5 Anatomy of Labor Supply Responses
- 6 Conclusion

Results in Context of Previous Work

# Extensive Margin



### **Extensive Margin**



Martinez, Saez, and Siegenthaler (2018): 2 year tax holiday in Switzerland More



# Extensive Margin





Structural estimates



Martinez, Saez, and Siegenthaler (2018): 2 year tax holiday in Switzerland



Bianchi, Gudmundsson & Zoega (2001): More work in tax-free year than years before and after



Group instrument: Age & education as instrument for wage changes





Meta analysis by Chetty et al. (2013) cites only two papers: Bianchi, Gudmundsson & Zoega (2001) and Pistaferri (2003)

Empirical Setting and Data

#### Time-Line of Events



#### Time-Line of Events



#### Time-Line of Events



### Salient, Simple and Large Incentive

- 1. Salient and simple tax reform
  - All labor earnings in 1987 tax-free
- 2. Large decrease in taxes
  - Net-of-tax wages increased by about 20% on average
- ⇒ Important for identifying behavioral responses under **adjustment frictions** and **inattentiveness**



**RSK** (a) "Road to Tax Freedom"

– Skilið skattframtali í tæka tíð



(b) Flyer with guidelines

#### Data

#### I construct a new dataset from admin records for the working-age population

- 1. Employer-employee data from payslips
  - Digitized payslips back to 1981 one slip per job
  - All pay: Wage earnings, contractor pay, commission and bonuses etc.
  - Working time in weeks 1 week: 40 hours
    - Full-time job: 52 weeks
    - Two parallel part-time jobs: 26+26 = 52 weeks
  - Information about jobs and firms (occupation, sector, ...)
- 2. Individual tax records
  - All sources of income, assets, debt, taxes and transfers, back to 1981
  - Construct a "tax calculator" for marginal tax rates

Tax-Bracket Difference-in-Differences

# Research Design: Difference in treatment intensity



#### Treatment Status, Sample & Measures of Labor Supply

#### **Assigning treatment status**

- Tax bracket in year t is endogenous to income in t
  - ullet Assign treatment status based on bracket in t-1 (Feldstein 1995; Gruber-Saez 2002)
  - Treatment intensity: bottom bracket as main control group

#### Sample and restrictions

- Restrict sample to core labor force pre-reform
  - Balanced sample workers observed in all years
  - Pre-reform earnings above base income (low-skilled minimum wage)



#### Measures of labor supply

Labor earnings; Weeks worked; Employment (earnings ≥ base income)

Tax bracket persistence

# **Estimating Equation**

$$y_{it} = bracket_{it-1} + \delta_t + \varepsilon \cdot \log(1 - \tau_{it}) + \boldsymbol{X}'_{it} \gamma + \nu_{it}$$

#### where:

- bracket<sub>it-1</sub> are tax-bracket indicators
- ullet  $\delta_t$  are common time fixed effects and  $oldsymbol{X}_{it}$  is a vector of controls
- $\bullet$   $y_{it}$  measures individual i's labor supply in year t
- $\varepsilon$  identifies elasticity: net-of-tax rate instrumented with  $D_{it-1} imes \delta_{t=1987}$

#### **Identifying Assumption:**

 Absent a tax-free year, labor supply of workers in high and low tax brackets would run parallel

### Reduced-Form: Labor Earnings & Weeks Worked



$$y_{it} = \textit{bracket}_{i,t-1} + \delta_t + \sum_{t=1982}^{1988} \eta_t \cdot \left(D_{i,t-1} \times \delta_t\right) + \mu_{it}$$

Graphical evidence - Earnings

Graphical evidence - Weeks

#### Labor Supply Responses

|                          | Earnings | Weeks    | Employment |
|--------------------------|----------|----------|------------|
|                          | (1)      | (2)      | (3)        |
| 2SLS DD estimate         | 0.374*** | 4.926*** | -0.033     |
|                          | (0.024)  | (0.784)  | (0.024)    |
| Reduced form estimate    | 0.077*** | 1.023*** | -0.004     |
|                          | (0.005)  | (0.162)  | (0.003)    |
| First stage estimate     | 0.207*** | 0.207*** | 0.127***   |
|                          | (0.001)  | (0.001)  | (0.001)    |
| Mean of outcome variable | _        | 48.43    | 0.914      |
| Observations             | 526,955  | 520,438  | 530,397    |

*Notes:* Controls are gender, age, education, marital status, whether living in the capital area or not, number of children at age 0-18. Tax rate,  $\tau$ , is marginal tax rate in cases of earnings and weeks, but average tax rate in case of employment, computed as tax payments divided by tax-base. Robust standard errors clustered by individual in parentheses. \*\*\*\* p<0.01, \*\*\* p<0.05, \*\* p<0.1

• Elasticity of weeks worked: 0.10 (5/48.4)

Earnings Weeks Employment Earnings growth distribution Predicted bracket Permanent effects Robustness tests

### Labor Supply Responses

|                          | Earnings | Weeks    | Employment |
|--------------------------|----------|----------|------------|
|                          | (1)      | (2)      | (3)        |
| 2SLS DD estimate         | 0.374*** | 4.926*** | -0.033     |
|                          | (0.024)  | (0.784)  | (0.024)    |
| Reduced form estimate    | 0.077*** | 1.023*** | -0.004     |
|                          | (0.005)  | (0.162)  | (0.003)    |
| First stage estimate     | 0.207*** | 0.207*** | 0.127***   |
|                          | (0.001)  | (0.001)  | (0.001)    |
| Mean of outcome variable | _        | 48.43    | 0.914      |
| Observations             | 526,955  | 520,438  | 530,397    |

#### **Decomposition:**

- More weeks (more daytime work, less vacation etc): 30%
- More earnings within weeks (over-time, effort etc): 70%

### Self-Employed Are More Responsive — More Flexibility

|                          | Wage earners |          | Self-employed |           |
|--------------------------|--------------|----------|---------------|-----------|
|                          | Earnings     | Weeks    | Earnings      | Weeks     |
|                          | (1)          | (2)      | (3)           | (4)       |
| 2SLS DD estimate         | 0.373***     | 2.337*** | 0.484***      | 10.127*** |
|                          | (0.027)      | (0.787)  | (0.057)       | (2.180)   |
| Reduced form estimate    | 0.076***     | 0.480*** | 0.103***      | 2.161***  |
|                          | (0.005)      | (0.161)  | (0.012)       | (0.464)   |
| First stage estimate     | 0.205***     | 0.205*** | 0.191***      | 0.191***  |
|                          | (0.001)      | (0.001)  | (0.003)       | (0.003)   |
| Mean of outcome variable | -            | 46.62    | _             | 58.61     |
| Observations             | 448,592      | 441,961  | 78,363        | 78,477    |

#### Evidence of real responses:

ullet Wage earnings 94% of effect; Commission, bonuses etc less than 1% ullet

Fewer hours of sick-leave Figure

Life-Cycle Difference-in-Differences

# MaCurdy (1981)



# MaCurdy (1981)



## My Setting



At age T, A is treated and B is a good counter-factual

#### **Empirical Strategy**

#### Matched Difference-in-Differences:

Compare individuals in adjacent birth cohorts when they are of same age when some have a tax-free year but others don't

- Tax-free year was an exogenous and unpredictable event
- Find similar individuals by exact matching within adjacent birth-cohort pairs
  - Pre-treatment characteristics that may correlate with trends in labor supply
  - Gender, marital status, number of children, education, location and income decile

# Graphical Evidence: Labor Earnings



# Graphical Evidence: Labor Earnings



#### Graphical Evidence: Weeks Worked



#### Labor Supply Respones

|                         | Earnings | Weeks    | Employment |
|-------------------------|----------|----------|------------|
|                         | (1)      | (2)      | (3)        |
| 2SLS DD estimate        | 0.654*** | 3.014*** | 0.068***   |
|                         | (0.016)  | (0.345)  | (0.013)    |
| Reduced form estimate   | 0.145*** | 0.670*** | 0.008***   |
|                         | (0.003)  | (0.077)  | (0.001)    |
| First stage estimate    | 0.209*** | 0.209*** | 0.110***   |
|                         | (0.002)  | (0.002)  | (0.001)    |
| Mean dependent variable | -        | 38.37    | 0.672      |
| Number of observations  | 546,434  | 537,774  | 587,332    |

Notes: Estimating equation:

$$y_{ik} = \alpha_c + \delta_k + \varepsilon \cdot \log(1 - \tau_{ik}) + \mathbf{X}'_i \gamma + \nu_{ik}$$

where  $\alpha_c$  and  $\delta_k$  are, respectively, birth cohort and event-time fixed effects. All regressions include match strata fixed effects.  $\tau$  is average tax rate in case of employment, but marginal otherwise. Robust standard errors clustered at the match-strata level are in parentheses. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1







# Summary of Frisch Elasticity Estimates

|                | Intensive             | Extensive                                     |
|----------------|-----------------------|-----------------------------------------------|
| Tax-Bracket DD | 0.374***<br>(0.024)   | -0.033<br>(0.024)                             |
| Life-Cycle DD  | Intensive<br>0.654*** | 0.068***<br>(0.013)<br>& Extensive<br>(0.016) |

# Summary of Frisch Elasticity Estimates

| Tax-Bracket | חח |
|-------------|----|
| Tax Bracket |    |

Life-Cycle DD

| Intensive                 | Extensive                      |
|---------------------------|--------------------------------|
| 0.374***                  | -0.033                         |
| (0.024)                   | (0.024)                        |
| 0.529***                  | 0.068***                       |
| (0.010)                   | (0.013)                        |
| <b>Intensive</b> 0.654*** | <b>&amp; Extensive</b> (0.016) |

## Summary of Frisch Elasticity Estimates

Tax-Bracket DD

Triple-Diff
Combined design

Life-Cycle DD

| Intensive                 | Extensive                      |
|---------------------------|--------------------------------|
| 0.374***                  | -0.033                         |
| (0.024)                   | (0.024)                        |
| 0.529***                  | 0.068***                       |
| (0.010)                   | (0.013)                        |
| <b>Intensive</b> 0.654*** | <b>&amp; Extensive</b> (0.016) |

Triple-Diff intensive-margin: **0.431**\*\*\*

 $\Rightarrow$  Equilibrium effects  $\approx 0.10$ 

Hicks, Marshallian and IES

Anatomy of Labor Supply Responses

#### What Factors Shape Labor Supply Responses?

Many existing theories - How to direct attention in most productive directions?

• One answer: "Let the data speak" — use machine-learning as a guide

### What Factors Shape Labor Supply Responses?

Many existing theories - How to direct attention in most productive directions?

• One answer: "Let the data speak" — use machine-learning as a guide

#### My approach

- 1. Estimate labor supply elasticities at the individual level (matched DD)
- 2. Rank characteristics by their importance using Random Forest (Breiman, 2001)
- 3. Causal estimation directed by importance









#### Overview: Three Directions

- 1. Labor-Market Attachment
- 2. Temporal Flexibility
- 3. Family Ties and Coordination

## Labor Earnings Elasticity by Age



## Employment Elasticity by Age



#### Overview: Three Directions

- 1. Labor-Market Attachment
  - Young cohorts enter the labor market More
  - Old cohorts delay retirement
- 2. Temporal Flexibility
- 3. Family Ties and Coordination

#### Overview: Three Directions

- 1. Labor-Market Attachment
- 2. Temporal Flexibility
- 3. Family Ties and Coordination

#### Adjustment Frictions

Canonical model: Workers can flexibly choose whether and how much to work

- Much work cast doubt on this assumption
  - Adjustment costs and Hours constraints (Hausman, 1980; Ham, 1982; Cogan, 1981;
     Altonji and Paxson, 1988,1992; Lundberg, 1985; Dickens-Lundberg, 1993; ...)
  - Differences in temporal flexibility across jobs (Goldin, 2014; Goldin and Katz, 2016;
     Mas and Pallais, 2017; Hall and Krueger, 2018)

What are the effects of these frictions on labor supply responses?

#### Temporal Flexibility

Measure: Working time dispersion within occupation in pre-reform years

#### Large dispersion in working time:

- Easy to switch between part-time & full-time Pharmacists (Katz-Goldin, 2016)
- Easy to take on additional shifts Uber drivers (Hall and Krueger, 2018)

Coefficient of variation: 
$$CV(weeks_{ot}) = \frac{\sigma_{ot}}{\mu_{ot}}$$

- Most flexible: Service workers (e.g. restaurants), cleaning, elem. agriculture
- Most rigid: Managers (manufacturing, construction) More

#### Temporal Flexibility



#### Hours Constraints

#### Measure of hours constraints: Fixed monthly salary

- Occupation shares based on detailed data on wages and hours More
- No public sector and not all private sectors and occupations
- **Highest**: Professionals (e.g. engineers) and managers
- Lowest: Elementary workers in construction, manufacturing and services

### Hours Constraints: Fixed-Salary Share by Occupations



Alternative measure: Working 52 weeks in primary job pre-reform Table

#### Overcoming frictions

Sizable responses for workers even in relatively rigid jobs

- How do they overcome frictions?
  - Hours may be flexible across jobs but rigid within jobs (Altonji-Paxson,1988; 1991)
  - Take up second job (moonlight) (Shishko-Rostker, 1976; Paxson-Sicherman, 1996)

## Secondary-Job Holding



Constrained in Primary Job: Working 52 weeks in primary job pre-reform

### Primary-Job Changes



Constrained in Primary Job: Working 52 weeks in primary job pre-reform

# Decomposition of Labor Supply Responses



## Overview: Three Directions

- 1. Labor-Market Attachment
- 2. Temporal Flexibility
- 3. Family Ties and Coordination

## Husbands, Wives and Family Ties

Studies frequently find larger labor supply elasticities for women than men

(Blundell and MaCurdy, 1999; McClelland and Mok, 2012)

• Do gender differences reflect family ties and coordination in the household?

# Husbands, Wives and Family Ties

Studies frequently find larger labor supply elasticities for women than men (Blundell and MaCurdy, 1999; McClelland and Mok, 2012)

• Do gender differences reflect family ties and coordination in the household?

Interdependencies in couples' labor supply

- 1. Couples enjoy spending time together leisure times are compliments
- 2. Husbands and wives are substitutes in home production (Becker, 1965)
- 3. **Income effect** if spouse's income is used for public goods in the family

# Husbands, Wives and Family Ties

Studies frequently find larger labor supply elasticities for women than men (Blundell and MaCurdy, 1999; McClelland and Mok, 2012)

• Do gender differences reflect family ties and coordination in the household?

Interdependencies in couples' labor supply

- 1. Couples enjoy spending time together leisure times are compliments
- 2. Husbands and wives are substitutes in home production (Becker, 1965)
- 3. **Income effect** if spouse's income is used for public goods in the family

Estimate own- and cross-elasticities for husbands and wives

Individual taxation: Independent variation in taxes across spouses











Reorganization of work: Full-time spouse respond less – Part-time more

Substitutability at home: Young & middle-aged men with (young) children Table



# Summary

#### People do respond to temporary work incentives

- Work more weeks & hours earn more income
- Young cohorts enter labor market, older cohorts delay retirement

#### Size of average & aggregate responses likely to differ across settings

- Demographic and labor-market structure
  - Extensive margin depends of population share of young and old
  - Young, old, married women (w. more children), flexible-job holders more likely to be in lower tax brackets
- Equilibrium effects and social multipliers
  - Household responses 23% lower than if spouses were treated in isolation
  - Demand for cleaning, child care, restaurant services enables more work

# Going Forward

#### Permanent effects of a temporary incentive

- Students delay schooling and some drop out permanently More
- Exchange higher income in future for income today
- What are the long-term consequences of this decision?

#### Consumption and savings

- Labor supply responses generate transitory increase in earnings
- How do households consume and save out of this income?
- Full picture of households' intertemporal behavior



